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X = input space, embedded in a Hilbertspace H by a suitable kernel:
X � H and diam (X ) � 1.

� = a probability measure on X 2 � f�1; 1g, the pair oracle
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x; x0; r

�
is the probability to encounter the two inputs x; x0 2 X being

� homonymous (same label) for r = 1 and
� heteronymous (di¤erent labels) for r = �1.
A pair classi�er is a function on X 2 to predict the third argument of �.

S =
��
x1; x

0
1; r1

�
; :::;

�
xm; x0m; rm

��
2
�
X 2 � f�1; 1g

�m
training sample, generated inm independent, identical trials of �, i.e. S � �m.

Goal: Use S to �nd a pair classi�er with low error probability.
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The risk of the operator T is the error probability of the classi�er fT
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estimation and generalization

Let f : R! R, f � 1(�1;0] with Lipschitz constant L.
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Theorem: 8� > 0, with probability greater 1� � in a sample S � �m
8T 2 L (H) with kT �Tk2 � 1

R (T ) � R̂f (T; S) +
8L kT �Tk2 +

q
ln (2 kT �Tk2 =�)p
m

:

where kAk2 = Tr (A�A)
1=2 is the Hilbert-Schmidt- or Frobenius- norm of A.
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2 as a stronger regularizer

(computationally more e¢ cient, but slightly inferior in experiments).
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For f we take the hinge loss f
 with margin 
 :
f
 has Lipschitz constant 1=
 and is convex.

Since


T �x� x0�

2 = 


T �T
�
x� x0

�
; x� x0

�
is linear in T �T ,

the objective �f
;� (T ) is a convex function of T
�T:
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;� is not convex in T , but 
 is convex in T
�T .

First possibility: Solve convex optimization problem for 
 on set of positive
semide�nite operators by alternating projections (as in Xing et al.)
Then take square root operator to get T .

Second possibility (my choice): Do gradient-descent of �f
;� in T
No problems with local minima:
If T is a stable local minimizer of �f
;�,
then T �T is a stable local minimizer of 
.



algorithm

Given sample S, regularization parameter �, margin 
, learning rate �
initialize �0 = �=

p
m (where m = jSj)

initialize T = (v1; :::; vm) (where the vi are row-vectors)
repeat

Compute kT �Tk2 =
�P

ij

D
vi; vj

E2�1=2
For i = 1; :::; d compute wi = 2 kT �Tk�12

P
j

D
vi; vj

E
vi

Fetch
�
x; x0; r

�
from sample S

For i = 1; :::; d compute ai  


vi; x� x0

�
Compute b Pd

i=1 a
2
i

If r (1� b) < 

then for i := 1; :::; d do vi  vi � �

�
r

ai

�
x� x0

�
+ �0wi

�
else for i := 1; :::; d do vi  vi � ��0wi

until convergence



experiments

with invariant character-recognition, spatial rotations (COIL100)
and face recognition (ATT).

1. training T from one task/group of tasks
2. training nearest-neighbour test-classi�ers with a single example/class
on a test task, using both the input metric and the metric induced by T .
3. recording the error rates of the test classi�ers

The pixel vectors x are embedded in the space H with the Gaussian rbf-kernel:

� (x1; x2) = 2
�1 exp

0@�4 




 x1kx1k �
x2
kx2k







2
1A :

The parameters 
 = 1 and � = 0:05 are used throughout.



rotation- and scale-invariant character recognition

Typical pattern used to train the preprocessor (4000 examples from 20 classes)
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rotation- and scale-invariant character recognition

Typical pattern used to train the preprocessor (4000 examples from 20 classes)

Nine digits used to train a single-nearest-neighbour classi�er

Some digits used to test the classi�er:



results for rotation/scale-invariant OCR

ROC-Area input 0.539
ROC-Area T 0.982
1-NN Error input 0.822
1-NN Error T 0.093


 1
� 4
� 0.005
Sample size 4000
Iterations 1000k



norms and singular-value-spectrum of T

kTk1 = 61.5
kTk2 = 27.7
kTk1 = 17.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20



Thank you!


