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a binary classification task for pairs

X = input space, embedded in a Hilbertspace H by a suitable kernel:
X C H and diam (X) < 1.

p = a probability measure on X2 x {—1, 1}, the pair oracle

p (x,z’,7) is the probability to encounter the two inputs =, ' € X being
e homonymous (same label) for » = 1 and

e heteronymous (different labels) for r = —1.

A pair classifier is a function on X2 to predict the third argument of p.

m
S = ((a:l,azll,ﬁ) e (a:m,a:’m,rm)) = ()(2 x {—1, 1})
training sample, generated in m independent, identical trials of p, i.e. S ~ p".

Goal: Use S to find a pair classifier with low error probability.
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pair classifiers induced by linear transformations

We will select our classifiers from the hypothesis space

{fT: <:U,a3’) r—>sgn(1— HT:U—T%’H) :TGE(H)}

A choice of T' € L (H) then implies a choice of

e the pair classifier fp,

e the pseudo-metric d (z,2') = ||Tz — T2/

e the Mahalanobis distance d? (z,z') = (T*T (z — 2') ,x — z')and
e the positive semidefinite kernel x (z,2') = (T*Tx, x’)

The risk of the operator I" is the error probability of the classifier f

R(T)= Pr {fT (a:, az’) + 'r} = Pr {7“ (1 — HTCC — Ta:/HZ) < O}

(x7x/7,r)Np ('I’C7$/7T)Np
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estimation and generalization

let f: R—>R, f> 1(_0070] with Lipschitz constant L.

For a training sample S = ((:Ul,:cll,'rl) - (:vm,x;n,rm)>
define the empirical risk estimate
)

~ 1
Re(1,8)==Y ¢ (m (1 — |7 (2 — =7)
m =1
Theorem: V4§ > 0, with probability greater 1 — § in a sample S ~ p"™
VI'e L(H) with |[T*T||, > 1

8L ||T*T 5 + \/In (2 | T*T]| /5)
Vm |
where |Al|, = T'r (A*A)l/2 is the Hilbert-Schmidt- or Frobenius- norm of A.

R(T) < }?f (T7 S) +




regularized objectives

The theorem suggests to minimize the regularized objective

N (T) = %Zg:lf (ri (1 — HT (azz — xé) ‘2)> + A ||\7;%T||2

Since ||T*T||, < ||T||% we can also use ||TH% as a stronger regularizer

(computationally more efficient, but slightly inferior in experiments).



regularized objectives

The theorem suggests to minimize the regularized objective

N (T) = %éf <ri (1 — HT (CBZ — xé) ‘2)> + A ”3;”2

Since ||T*T||, < ||T||% we can also use ||T||% as a stronger regularizer
(computationally more efficient, but slightly inferior in experiments).

For f we take the hinge loss f~ with margin ~y :
f~ has Lipschitz constant 1/+ and is convex.

0
Since ||T' (z — 2/)||> = (T*T (x — &) , & — &) is linear in T*T,
the objective Ay (T') is a convex function of T™T..



optimization problem

Find T' € L (H) to minimize

2 A
)+ 1T T,
m

Ap A (T) =Q(T*T) = % gjl fr (ri (1 — |7 (i — =) =
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optimization problem
Find T' € L (H) to minimize

12))%77 |7,

1 m
A (T)=Q(TT) = =3 f, <7“7; <1 — |7 (2: — =)
1=1
Ag x is not convex in T', but € is convex in T*T.

First possibility: Solve convex optimization problem for €2 on set of positive
semidefinite operators by alternating projections (as in Xing et al.)
Then take square root operator to get 7'



optimization problem

Find T' € £ (H) to minimize

NA () =2 T) = -3 1 (v (1= [ (= ) ) )+ T T

N

Az x is not convex in T, but € is convex in T™T.

First possibility: Solve convex optimization problem for €2 on set of positive
semidefinite operators by alternating projections (as in Xing et al.)
Then take square root operator to get 1.

Second possibility (my choice): Do gradient-descent of Ag y in T
No problems with local minima:

If T" is a stable local minimizer of /\f%A,

then T*T is a stable local minimizer of 2.



algorithm

Given sample S, regularization parameter A, margin «, learning rate 6
initialize A’ = \/y/m (where m = |S])

initialize T' = (v1, ..., vm) (where the v; are row-vectors)

repeat

2\ 1/2
Compute ||TT||, = (Zz‘j <’Uz',’vj> )
For i =1,...,d compute w; = 2| T* T3 % (v;, vj) v;
Fetch (z, 2/, r) from sample S

For : = 1,...,d compute a; < {(v;,x — x’)

Compute b Zgzl a%

Ifr(1—0) <~
then for7:=1,...,d do v; < v; — 6 (%ai (z — ') + )\’wi>
else for 4 :=1, ..., d do v; «— v; — O\ w;,

until convergence




experiments

with invariant character-recognition, spatial rotations (COIL100)
and face recognition (ATT).

1. training T from one task/group of tasks

2. training nearest-neighbour test-classifiers with a single example/class
on a test task, using both the input metric and the metric induced by T'.
3. recording the error rates of the test classifiers

The pixel vectors x are embedded in the space H with the Gaussian rbf-kernel:
2)
L1 L2

|z1]]  [|z2]]

k (21, 22) = 2 Lexp (—4 '

The parameters v = 1 and A = 0.05 are used throughout.
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rotation- and scale-invariant character recognition

Typical pattern used to train the preprocessor (4000 examples from 20 classes)

Ao fIY o o
O‘O@J‘Q*)\USZ

Nine digits used to train a single-nearest-neighbour classifier

ONDoxGo Vv

Some digits used to test the classifier:
A/ 3P oO®
QVCcwd 9o vy



results for rotation/scale-invariant OCR

ROC-Area input
ROC-Area T
1-NN Error input
1-NN Error T’

ol
o

A
Sample size
lterations

0.539
0.982
0.822
0.093

0.005
4000
1000k

correct accept of class equality —p

raw data ==
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e

e

/

false accept of class equality —»




norms and singular-value-spectrum of 1

ITl, = 615
T, = 27.7
1T = 17.3



Thank you!



