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Abstract

In the multiple instance learning setting, each observation is a bag of feature vec-
tors of which one or more vectors indicates membership in a class. The primary
task is to identify if any vectors in the bag indicate class membership while ig-
noring vectors that do not. We describe here a kernel-based technique that defines
a parametric family of kernels via conformal transformations and jointly learns
a discriminant function over bags together with the optimal parameter settings of
the kernel. Learning a conformal transformation effectively amounts to weighting
regions in the feature space according to their contribution to classification accu-
racy; regions that are discriminative will be weighted higher than regions that are
not. This allows the classifier to focus on regions contributing to classification
accuracy while ignoring regions that correspond to vectors found both in posi-
tive and in negative bags. We show how parameters of this transformation can
be learned for support vector machines by posing the problem as a multiple ker-
nel learning problem. The resulting multiple instance classifier gives competitive
accuracy for several multi-instance benchmark datasets from different domains.

1 Introduction

Multiple-instance learning (MIL) as introduced in [8, 5] is a generalization of supervised classifica-
tion in which class labels are associated with sets of feature vectors, called bags, instead of individual
patterns. However, compared to generic classification problems involving sets of instances, the MIL
setting has more specific semantics, namely that a bag belonging to a class (i.e. a positive example in
binary classification) contains class-characteristic feature vectors that are not contained in negative
bags. It is the presence or absence of such feature vectors that determines the classification outcome
for the bag as a whole.

This setting has numerous interesting applications, ranging from drug design [5] to text categoriza-
tion [2] and tasks in computer vision [11, 13] or image retrieval [11, 15]. In these applications, the
feature vectors in a bag may correspond to different aspects, alternate data representations, or local
patches, parts, or fragments. For instance, in visual object recognition, each feature vector may en-
code local image properties, some of which might come from the actual object of interest (e.g. a face
in the context of face recognition), but some of which might come from an arbitrary background.

Learning a classifier from multiple instance data involves two aspects: (i) dealing with the intrinsic
variability of the characteristic and non-characteristic feature vectors and (ii) identifying, either
explicitly or implicitly, the truly characteristic feature vectors in (positive) bags. The first problem
corresponds to standard supervised classification, while the second problem deals with ambiguity
that is specific to the MIL scenario.

Because of the intrinsic variablility of the feature vectors, nearby vectors can be assumed to be
similarly characteristic. We therefore wish to modulate the contribution of an individual vector to a
classification decision based on where in the feature space it is located. Conformal transformations



directly address the ambiguity introduced by the MIL setting by weighting individual feature vectors
by a discriminatively learned function over the feature space. Regions of the feature space that are
indicative of class membership are weighted highly, while uninformative regions will have a weight
close to zero. We therefore use conformal transformations of a base kernel to define generalized set
kernels; such transformations have been investigated by [14] in a different context. In some sense,
conformal kernels allow us to recast the diverse density [10] idea in the kernel setting: the geometry
of the input space is locally magnified or shrunken based on the discriminative power of feature
vectors in the region. As shown by [14] this corresponds in the metric case to a local adaptation of
the (Riemannian) metric tensor in a way that locally preserves angles.

2 Multi-instance Kernels

The standard set kernel [7] over sets p = {x1, . . . , xN} and p′ = {x′

1
, . . . , x′

N ′} of patterns is
defined as follows,

k(p, p′) =
1

N · N ′

N
∑

i=1

N ′

∑

j=1

κ(xi, x
′

j) . (1)

where κ is some pattern-level base kernel. It is straightforward to verify that this is equivalent to the
inner product between the centroids of the sets of vectors in the feature space implicitly defined by
κ.

In the multi-instance kernel of [6] the set kernel is modified to better address the multi-instance
learning problem by exponentiating κ(xi, x

′

j) by a power q ≥ 1. Theoretically, this ensures sepa-
rability of any training set of bags as q → ∞, however at the cost of a diagonally-dominant kernel
matrix with very poor generalization capabilities. In the special case of Gaussian kernels for which
0 ≤ κ(x, x′) ≤ 1, the overall summation is dominated by the pairs of vectors (x, x′) ∈ p × p′ with
the smallest angle between them, while the influence of feature vectors that do not closely match
vanishes. This has to be expected to perform well on a multiple instance problem only under the as-
sumption that vectors indicating class membership are tightly clustered, while non-indicative vectors
have a low probability of being close together (and consequently will typically have small values
κ(xi, x

′

j)). This obviously does not address the issues of non-discriminative features as each vector
in the bag is weighted equally. If only a small fraction of the vectors indicates class membership,
the other vectors will overwhelm the result. Multi-instance kernels hence do not actually solve the
multi-instance learning problem. Rather, they solve the problem of defining a kernel between sets of
vectors that makes no distinction between vectors that are indicative of class membership and those
that are not.

3 Conformal Multi-Instance Kernels

3.1 Conformal Kernel Transformations

A conformal kernel modifies a kernel function in a way that preserves angles between vectors in
the mapped space [1, 14] and that can be used to locally stretch or magnify the feature space. In
particular, a conformal kernel is one that has the form

kθ(x, x′) = cθ(x)cθ(x
′)κ(x, x′) (2)

where κ(x, x′) is a base kernel between patterns, e.g. a Gaussian kernel, and cθ > 0. kθ is a valid
kernel with feature map Φθ(x) = cθ(x)Φ(x), with κ(x, x′) = 〈Φ(x),Φ(x′)〉, as can be easily
checked.

Although angles are preserved, the conformally transformed mapping, Φθ expands regions of the
space where cθ is large, and contracts regions of the embedding space where it is small. To see this
note that for the input space R

n the n × n positive-definite matrix G(x) = (gij(x))i,j , with

gij(x) ≡
(

∂

∂xi

Φ(x)

)

·
(

∂

∂xj

Φ(x)

)

(3)

is the Riemannian metric tensor induced on the manifold in the embedding space. The volume form
in a Riemannian space is defined as

dV =
√

g(x)dx1 . . . dxn (4)



where g(x) = detG(x). The factor
√

g(x) represents how a local area is magnified in the embed-
ding space under the mapping Φ. In general, the conformal transformation of equation 2 yields

g̃ij(x) =
∂cθ(x)

∂xi

∂cθ(x)

∂xj

+ cθ(x)2gij(x) (5)

The first term can be made small by specifying relatively slow varying conformal functions. Focus-
ing on the second term, we see that large values of c(x) serve to increase the volume element of
the embedding space while small values will decrease the volume element. In a maximum margin
classifier, this means that regions of the space corresponding to large values of cθ(x) will be given
greater emphasis than those with small values.

3.2 Conformal Multi-instance Kernels

We propose that a conformal multi-instance kernel be defined as a modification of a standard set
kernel in which the base kernel between individual patterns is modified conformally.

k(p, p′) =
1

N · N ′

N
∑

i=1

N ′

∑

j=1

cθ(xi)cθ(x
′

j)κ(xi, x
′

j) (6)

The conformal transformation cθ > 0 allows altering the geometry of the feature space in a way that
puts more emphasis on relevant input space regions.

Conformal multi-instance kernels, therefore, are set kernels over conformally modified base-kernels,
where the conformal transformation is parametrized by θ, which is estimated from labeled training
data as part of the learning process.

In this paper, we specify cθ(x) to have the specific form

cθ(x) =

q
∑

r=1

θrκ̃(x, µr) (7)

that is, for a given set of expansion points µr in the input space, we assume the positive function
cθ can be written as a radial basis function network with kernel κ̃ (one may or may not set κ̃ = κ).
In the experiments performed here, we have set κ̃ to be a Gaussian. Intuitively, a large value of θr

indicates that the neighborhood of µr is a discriminative region of the feature space. In the next
section, we discuss two techniques for learning the parameters, θ, for a support vector machine.

In order to find suitable expansion points µr, we perform a highly-scalable unsupervised clustering
stage prior to discriminative learning. Specifically, we have followed the buckshot heuristic pro-
posed by [4] which finds R clusters from n data vectors, based on a randomly generated sample of
size

√
Rn using k-means. We have found the solution not to be too sensitive to the random sample

and initialization of k-means and suggest optimizing R via cross-validation.

4 Learning Algorithms

We propose to simultaneously optimize a support vector machine classifier while optimizing the
parameters θ in Eq. (7). To do this, we make use of generalization bounds to define functions to
minimize with respect to SVM parameters α and θ. Two bounds that have been used in this context
previously are the well-studied radius-margin bound [3] and the trace-margin bound [9].

4.1 Optimizing the Trace-Margin Bound

Lanckriet et al. make use of the trace-margin bound and semi-definite programming to simultane-
ously learn the kernel parameters and optimize the margin. As this is one convex optimization pro-
cedure, this has advantages both in speed and optimality. When Kθ can be defined as a positively
weighted linear combination of kernel matrices

Kθ =

q
∑

l=1

θlKl, θ > 0 , (8)



the optimization can be formulated as a quadratically constrained quadratic program (QCQP, c.f.
[9], Theorem 17). More recently, multiple kernel learning has been formulated as a semi-infinite
linear program which is generally faster than the QCQP approach [12].

If Eq. (6) can be written as a linear combination of positive definite functions, we can optimize θ
using multiple-kernel learning. As we expand Eq. (6)

kθ(p, p′) =
1

NN ′
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we see that this function is quadratic in parameters θ. However, we notice that for localized kernels
such as Gaussian kernels we often will have a situation where

κ̃(xi, µl)κ̃(x′

j , µm)κ(xi, x
′

j) ≈ 0 (10)

for l 6= m. When ‖xi−x′

j‖ is small, κ(xi, x
′

j) will be large, but at least one of κ̃(xi, µk) or κ̃(x′

j , µl)
will be close to zero. When ‖xi − x′

j‖ is large, κ(xi, x
′

j) will be close to zero and the product will
be close to zero. Therefore we may attempt to simplify the conformal MI-kernel as follows
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 (12)

which is linear in the (transformed) parameters ρl ≡ θ2

l . As we will show in the experimental
section, this simplified kernel is still able to capture the MI-kernel idea, while leading to learning
algorithms with much improved scalability.

5 Experimental Results

In our experiments, we implemented the linear combination of kernels in equation 12 as well as
an additional matrix computed using the standard set kernel. This gives a guarantee that the trace-
margin bound will be no worse than a standard set kernel alone. We used cross-validation to select
the bandwidth associated with the conformal transformation, and the bandwidth for the base Gaus-
sian kernel between patterns.

We begin with an illustrative toy example in which the data lie in a one-dimensional space, figure 1.
The positive and negative bags are generated by sampling five points from mixture of Gaussians dis-
tributions, each with two equally-weighted centers at {5, 0} and {0,−5} respectively. As expected,
the clustering step closely approximates these centers. Interestingly, the multiple-kernel learning
step places nearly all the mass at the RBF located at 5. This is due to that a few instances from
positive bags drawn from the zero mean Gaussian have relatively large negative values. The data
are therefore more separable as viewed through the “lens” of the RBF centered at 5 than the RBF
centered at −5. Due to the one-norm regularization properties of multiple kernel learning [12], the
more informative kernel is accorded the majority of the weight. In repeated experiments, the RBF
centered at 0 was given a weight of 0, as was the standard set kernel. Qualitatively similar results
were obtained when optimizing the radius-margin bound, indicating that the multiple kernel learning
approach to optimization is a reasonable approximation in this case.

The empirical results reported here are from three main domains: pharmaceuticals, object recogni-
tion in computer vision, and text categorization. Specifically, we report results for the benchmark
MUSK data sets, detection of specific kinds of animals in images, and categorization of TREC doc-
ument data sets. Details of the multi-instance learning test suite can be found in [2]. Table 1 shows
comparative results for our technique and the best result previously published in [2]. In every case
the kernel was able to achieve results that were comparable to the previous best results. Note that
due to space restrictions, the comparative results are taken from the best of several variants of their
algorithm, and the best results for the MUSK datasets are reported for the IAPR algorithm, which is
highly optimized to the MUSK problem. We refer the interested reader to [2] for further details and



Figure 1: A toy example. The horizontal axis represents the feature values, while the vertical axis
represents which bag a feature belongs to. The red asterisks are the RBF centers selected using
k-means clustering. Bags below the dotted horizontal line belong to class −1, while bags above the
dotted line belong to class 1. The learned conformal function is plotted in blue at the bottom.

Table 1: Classification accuracy on benchmark datasets

MUSK 1 MUSK 2 Elephant Fox Tiger

Conformal Kernels 90.22 86.96 83.5 61.5 84.5
Multi-instance SVM 92.4 (IAPR) 89.2 (IAPR) 82.2 59.4 84
EM Discriminative Density 84.8 84.9 78.3 56.1 72.1

TREC 1 TREC 2 TREC 3

Conformal Kernels 94 76.25 86
Multi-instance SVM 93.9 84.5 87
EM Discriminative Density 85.8 84.0 69

results. It should also be noted that we did not re-implement the techniques reported in [2] so we are
not able to report statistical significance. These initial results suggest that this approach may be well
suited to computer vision, where multiple regions of the input feature space need to be considered
for classification.

In the results reported here, the number of cluster centers was fixed at 300. The approximate range of
bandwidths for the RBF network was selected based on the singular values of the clusters obtained
during the buckshot clustering step. The overlap of the support between RBFs was relatively low,
and the approximation in equation 12 holds well in the experiments performed here. The result of
cross-validation was typically that the bandwidth associated with the cluster centers was two to three
times as large as the bandwidth for the base kernel. Set kernels using the same bandwidths as the
conformal multi-instance kernel performed at approximately chance.

6 Conclusions and Future Work

We have presented here a novel form of kernel for solving the multi-instance learning problem that
performs competitively with previous results. Previous maximum margin approaches have either
treated every pattern within a bag equally (e.q. [6]) or have modified the SVM formulation (e.g. [2])),
while our approach models the semantics of the multi-instance problem by a specific choice of a
family of kernels.



It is interesting to note that in our formulation, regions corresponding to patterns only occurring in
negative bags may be emphasized by the conformal transformation. In content based image retrieval,
a classifier looking for images of tigers may determine that tigers and automobiles are very unlikely
to co-occur. Any image in which a car appears will therefore be considered to be less likely to also
have a tiger present. In previous MIL approaches, background patterns are explicitly assumed to
have no effect on classification.

The clustering approach used here may be able to be improved upon by placing the radial basis func-
tion centers in a way that makes use of bag labels. As the conformal transformation will emphasize
areas that have a high concentration of positive or negative features, we may be able to increase
performance given a fixed number of RBF centers by placing them in these regions to begin with.
We are also interested in different forms of the conformal function, such as spectral decompositions.
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